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1. INTRODUCTION 
 

et scrubber device mimics natural processes 

where contaminant gases or dust laden air is 

cleaned by rain, snow or fog. It can collect 

flammable and explosive dusts safely, absorb gaseous 

pollutants, and mists and it has been successfully used for 

medical waste incineration and other industrial 

applications. The first industrial scrubbers attempted to 

duplicate this natural cleaning with dusty air ascending 

through a rain of liquid droplets in a large, vertical tube 

and subsequent developments reduced the space 

requirements for scrubbers, (Liu and Liptak, [1]).  

 

During wet scrubbing process shown in Figure 1, water 

droplets are introduced at the top of an empty chamber 

through atomizing nozzles and fall freely at their terminal 

settling velocities counter-currently through the rising gas 

stream containing particles from industrial production. The 

particles are then separated from the gas stream and 

collected in a pool at the bottom of the chamber. 

 

The cleaned gases exiting the scrubber passes through a 

mist pad which removes water droplets from the gas 

stream. The dirty water from the scrubber system 

known as the slurry can be used as a scrubbing liquid in 

the removal of S02 or recycled. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Several attempts have been made to investigate the 

performance of wet scrubber system (Makkinejad [2], Kim 

et al [3], Rahimi et. al [4], Bingtao [5], Garba [6] and Bozorgi 

et. al [7]). In most of the studies, analytical solutions were 

provided for the performance of the system while others 

are more complex and require numerical solution and 

iterations with a computer.  
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Artificial Neural Network Model for Predicting Wet 
Scrubber Performance  
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Abstract - Increased public awareness posed for global climate change has led to greater concern over the impact of environmental changes due to 
constant emissions of air pollutants from industrial production. Wet scrubbers have important advantages when compared to other air pollution control 
devices. They can collect particulates like flammable and explosive dusts, foundry dusts, cement dusts, large volume of gaseous pollutants, acid mists and 
furnace fumes. In this study, a three layer feed forward neural network has been used to predict the performance of wet scrubber system for air pollution 
control. The theoretical performance, ηperf of the system was calculated using 206 scenarios for 8 data sets for the operating variables with nonlinear and 
complex characteristics. The performance fitness of the neural network (MSE = 0.00000107 and R-value = 0.9979) describes the effectiveness of the ANN 
model in predicting the performance of the scrubber system and the model follows the pattern of the theoretical data describing the scrubber performance 
at a higher efficiency range. 
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Nevertheless, the operating variables of  wet scrubber 

system; gas velocity, temperature profile, particle diameter, 

terminal settling velocity of liquid droplets, liquid droplet’s 

diameter, liquid to gas ratio and particle density plays a 

significant role in the gas-particle separation process. They 

represent a non-linear and multivariable condition for the 

determination of the dynamic behavior of the scrubber 

system. But, Artificial Neural Networks (ANN) imitates 

learning process of the human brain which can process 

problems involving non-linear and complex data especially 

when the underlying data relationships are not known, 

imprecise, random or noisy.  

 

The network comprised of different types of layers such as 

the input-layer, one or more hidden layers and an output 

layer (Figure 2). ANN Modeling technique is a valuable 

tool for understanding the dynamic behavior of a system 

and it provides a significant potential for solving 

operational problems. The approach can be used for testing 

control strategies at a reasonable cost and the results 

obtained can be evaluated for different operating data 

before concepts are translated into full scale plant.  

 

ANN system is not labor intensive, it possessed self 

learning and tuning capabilities and it is ideally suited for 

modeling environmental air pollution problems  such as in 

air quality prediction in Barai et. al [8], modeling of 

industrial air pollution in Boger [9], modeling of air 

pollutants dispersion over an urban area in Peace [10], 

optimization of  predictor for air pollution in Raihane et al, 

[11], prediction of indoor air quality in Mirhan [12], 

prediction of N0X level in Bukovsky and Kolovratnik [13], 

prediction of air pollution levels in Berastegi et al [14], 

prediction of ambient air quality in Mahanija, et al. [15] and 

prediction of tropospheric ozone concentration levels in 

Abdul-Wahab and Al-Alawi [16].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It has also been used for vehicular pollution modeling in 

Sharma et al [17], control of air-fuel ratio for automotive 

fuel injection system in Cesare [18], Management and 

Control of Air Pollution Minimization and Mitigation 

Processes in Christine and Guo [19] and characterization of 

atmospheric PM10 and PM2.5 concentrations in Karaca [20].  

 

Aiming at the periodicity and randomness features of the 

operating variables in wet scrubber system, a stochastic 

data which includes values in the form of probability 

distribution should be considered so as to capture the 

complex and nonlinear characteristics of the problems and 

obtain an appropriate treatment of the uncertainties.  This 

predicts what conditions might be likely under different 

characteristics of these variables. Method of using this 

approach has been reported in environmental pollution 

problems and produces efficient results depending on the 

actual values that the random variables take in each 

realization as presented in Qin [21], Omar and Rosario [22], 

Gosavi [23], Zhiyong and Hiroshi [24], and Phaedon and 

Andre [25].  

 

The combination of stochastic and neural network 

techniques in a system will improve the prediction 

accuracy and produces a hybrid system that is cost effective 

(Luciana et al. [26]). The approach has been applied to a 

broader range of problems with stochastic behavior such as 

in the study involving a stochastic modeling based on static 

feed-forward neural network approach and linear-

nonlinear regression analysis techniques for the prediction 

of single droplet collection efficiency in spray tower 

scrubber conducted by Yetilmezsoy and Saral in [27].  

 

In the study, 205 different artificial scenarios were 

considered for the neural network approach. The scenarios 

were used to form five input variables selected from the 

operating conditions of the scrubber system. However, the 

combined effect of all the operating conditions of the 

scrubber system such as the liquid to gas ratio (δ) and the 

terminal settling velocity of the scrubbing liquid droplets 

(Utd ) was not considered which seems to be the limitations 

of their study.  

 

The main objective of this study is to develop a suitable 

Artificial neural network (ANN) model for predicting wet 

scrubber performance by considering feed-forward back 

propagation learning algorithms using 206 data set 

scenarios generated from stochastic method and 

computational analysis and evaluate the model using the 

performance fitness of neural network (MSE and R-value).  
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2. THEORETICAL ANALYSIS 
The US Environmental Protection Agency, EPA and 

National Association of Clean air Agency, NACAA in [28] 

indicated that, mathematical models provide a means for 

generating datasets for estimating scrubber performance 

when empirical data and pilot scale data is not available. In 

this regard, mathematical models with respect to the 

operating variables of the scrubber system design 

specifications (Z, D, dsupply, dspray) and the system performance 

characteristics (QL, QG, Cf, CD, Re, ηsep, Ug, µg, ρg, dP, dD, ρP, 

Utd) has been used to generate datasets that predicts the 

dynamic behavior of the system by considering the 

performance efficiency, ηperf obtained from mass balance 

across a differential section of the scrubber system shown 

in Figure 3. 

 

The mass of particle that enters the system must by law of 

conservation of mass either leave the system or accumulate 

within the system defined by the mass balance: 

 

Mass in - Mass out - Mass collected = Accumulation           (1) 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

From the Figure, 
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But, the total amount of particle collected is given as the 

product of mass of particles collected by one droplet, 

during the contact time and the total number of drops 

entering the cross-section per unit time, Δt. This implies 

that: 
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Integrating and making further substitutions, the 

performance efficiency is given by (4) 
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From (4), the dependent variable, ηperf is the performance 

characteristics for predicting the dynamic behavior of the 

scrubber system. ζ is the separation efficiency for single 

liquid droplet (as function of ψ, ρP, dD, dP, μg , Ur, Ug, Uf, T),  

δ is the liquid to gas ratio, (QL, QG) and Ur is the relative 

velocity of ga and liquid (Utd , Ug, Uf, Re, CD). These 

variables played vital role in the scrubber operations. They 

posed complexity and uncertainties in the system as such; 

they tend to represent a non-linear and multivariable 

condition.  

 

To obtain datasets for the performance efficiency (ηperf), 

computational analysis was carried out for the data 

scenarios given in the large range of the operating variables 

using the mathematical models described as follows: 

 

2.1 The separation efficiency, ζ  

This depends upon three mechanisms, impaction, 

interception and diffusion. Costa et al in [29] indicated that, 

Impaction mechanism is the dominant separation 

mechanism for separating particles that are ≥ 0.5µm. The 

separation efficiency due to impaction is given by (5); 
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2.2 The impaction number, ψ  

Considering (5), impaction number is the determining 

factor for particle separation due to impaction mechanism. 

Generally, it is anticipated that the larger the value of the 

impaction number, the higher the separation efficiency [6]. 
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2.3 The Cunningham Correction Factor, Cf 

To allow for slip, the Cunningham correction factor, Cf  is 

introduced into the impaction number.  
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Figure 3: Mass Balance across the Scrubber Cross-section 
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P is the atmospheric pressure (1atm), Mg is the molecular 

weight of the gas assumed to be air (29 g), T is the gas 

temperature (0C), R1 and R2 are the universal gas constants 

(0.08206 m3 atm/mol K and 8.31448 J/mol K).  

2.4 The Gas Viscosity, µg 

Depending on the temperature values, the gas viscosity µg 

can be calculated using equation described by Yetilmezsoy 

and Saral in [27]. 

 

 2730001464.00234.0  Tg                        (10) 

 

 

 

 

 

 

 

 

 

 

 

 

 
2.5 The Terminal Settling Velocity of Liquid Droplets, 

Utd 

A condition where the droplet is falling in still air, then its 

terminal velocity, Utd  given in (22) is the velocity at which 

the drag force, Fd is just balanced by the gravitational force, 

Fg on the droplet.  

 

gD

gDD

td
C

dg
U



 )(

3

4 
           (11) 

The variables ρD and ρg are liquid droplets and gas 

densities. CD is the drag coefficient as a function of the 

Reynolds number, ReD of the water droplets given by the 

equation; 
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3.  MATERIALS AND METHOD 
Scope of possible future outcomes of a stochastic data is 

observable by considering scenarios for the given 

independent variables. Using the stochastic approach in 

this study, 206 scenarios for the operating variables has 

been considered and their statistical properties are shown 

in Table 1. The advantage of this approach is that it can 

create a map of uncertainty that can capture the range of 

possibilities and explore the future dynamics of the 

scrubber system.  

 

For the ANN modeling in this study, 8 input variables (X1-

X8) shown in Table 2 and one output variable (Y) has been 

considered. These data sets include 6 operating parameters 

(X1, X2, X3, X4, X5 and X6) generated using stochastic  

 

TABLE 1: STATISTICAL PROPERTIES OF THE STOCHASTIC DATA SETS 

VARIABLES UNIT STATISTICAL PROPERTIES 

Stochastic 

Scenarios 

Maximum 

Value 

Minimum 

Value 

Range Step 

Droplet’s Diameter, dD  Particle 

Diameter, dp 

Particle Density,  ρp    Temperature 

Profile, T   

Gas Velocity, Ug,          

Liquid to Gas Ratio, δ 

μm 

μm 

kg/m3 

0C 

m/s 

l/m3 

206 

206 

206 

206 

206 

206 

2000 

10 

3000 

200 

1.5 

2500 

40 

0.5 

1000 

25 

0.025 

5 

1960 

9.5 

2000 

175 

1.475 

2495 

9.5610 

0.0463 

9.7561 

0.8537 

0.0072 

12.1707 
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scenario approach while the variable X7 is computed as a 

function of X4 using (10). 
 
 
TABLE 2: DATA SETS OF INPUT VARIABLESCONSIDERED IN    
   THE ANN 

INPUT  VARIABLES UNITS SCENARIOS 

X1                     Particle Diameter, dP 

X2                     Particle Density, ρP 

X3                     Droplet’s Diameter, dD 

X4                     Temperature, T 

X5                     Gas Velocity, Ug 

X6                     Liquid to Gas Ratio, δ 

X7                     Dynamic Viscosity of Gas, μg 

X8                     Terminal Settling Velocity, Utd   

µm 

kg/m3 

µm 
0C 

m/s 

l/m3 

kg/ms 

m/s 

206 

206 

206 

206 

206 

206 

206 

206 

 

In most studies, the terminal settling velocity of the 

scrubbing liquid droplet (X8) is computed by iterations 

using (11). But, using this approach may not be enough as 

the drag coefficient chosen may be wrong.  
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The most used and most reliable experimental 

measurements of X8 in the raindrop size ranges are those of 

Gunn and Kinzer in [30]. The experimental measurement  

 

 

contains 34 data sets of size domains; 100µm ≤ dD ≤ 

5800µm. In this study, the size domain for the experimental 

data was divided into 25 data for training and 9 data for 

validation and this was used to develop a curve fit model 

(Figure 4) for the prediction of the terminal settling velocity 

of the stochastic liquid droplets.  

 

The curve fit model was developed having the best 

goodness of fit statistics; mean square error, MSE is 1.0680e-

005, the sum of squares of the regression is 0.00542 and the 

correlation coefficient, R-square is 1. Using the curve fit 

model, the terminal settling velocities for the stochastic 

droplet sizes were estimated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Considering the residuals from the fitted model (Figure 5), 

it appears that the residuals randomly scattered around 

zero (systematically negative) indicating that the model 

describes the experimental data well. 

 

    Figure 4: Experimental Data and Curve Fit Model for the Terminal Velocities 
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There are a number of different parameters that must be 

decided upon when developing a neural network model. 

Among these parameters are the number of layers, the 

hidden neuron numbers and the epoch’s number (number 

of training iterations). 

 

 

 

 

However, a three layer neural network model shown in 

Figure 6 (comprising of one input, one hidden, and one 

output layers), twenty five hidden neuron numbers and 50 

epochs number were considered in this study.  

 

The network used back propagation algorithm with 

sigmoid transfer function (tansig) at the hidden layer and 

linear transfer function (purelin) at the output layer based 

on the input vector (8×206) of 8 operating variables and the 

target vector (1×206) obtained from the computational 

analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Also, in order to obtain the best algorithm for the training, 

eight (8) most used back propagation training algorithms 

(Table 3) have been considered.  

 
 
 
 

 
Figure 5: Residuals of the Fitted Model 

 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

2

4

6

8

Liquid Droplet Size (µm)

T
e
rm

. 
S

e
tt

l.
 V

e
l.

 (
m

/s
)

Data and Fits

 

 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
-0.01

-0.005

0

0.005

0.01

Residuals

 

 

Experimental Data

Predicted Data

Residual Plot

 

 

 

 

 

 

Figure 6:  Neural Network Architecture for Predicting the Scrubber Performance 

HIDDEN LAYER 

INPUT LAYER 

OUTPUT LAYER 

Input Signals 

Error Signals 

Utd 

T 

μg 

δ 

dP 

dD 

ρP 

ηperf 

Ug 

1 

2 

6 



International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012                                                                                         7 
ISSN 2229-5518 
 

IJSER © 2012 

http://www.ijser.org 

 
 

 
TABLE 3: BACKPROPAGATION (BP) ALGORITHMS CONSIDERED   
  IN  THE STUDY 

S/N BACKPROPAGATION ALGORITHM  ACRONYM 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Resilient BP(Rprop) 

Fletcher-Reeves Conjugate Gradient BP 

Polak-Ribiere Conjugate Gradient  BP 

Powell-Beale Conjugate Gradient  BP 

Levenberg-Marquardt BP 

Scaled Conjugate Gradient BP 

BFGS Quasi-Newton BP 

One-Step Secant BP 

RP 

CGF 

CGP 

CGB 

LM 

SCG 

BFG 

OSS 

 

First step for the ANN modeling is loading the input and 

output data into the MATLAB® workspace and this is 

followed by dividing the data into 136 inputs (p) and 

output (t) data sets for training and 70 input (a) and output 

(s) data sets for testing as presented in Table 4.  

 
TABLE 4: INPUT-OUTPUT DATA SETS FOR THE ANN 

UN-NORMALIZED 

PARAMETERS 

NORMALIZED 

PARAMETERS 

NUMBER OF 

DATA SETS 

Training Input, p 

Training Output, t 

Testing Input, a 

Testing Output, s 

pn 

tn 

an 

sn 

136 

136 

70 

70 

 

To make the Neural Network more efficient, the input and 

output data sets were normalized to gain zero mean and 

unity standard deviation. The principal component analysis 

(PCA) was then used to eliminate less than 2% of of the 

variation in the data sets.  

 

4. RESULTS AND DISCUSSION 
One of the important factors in using the ANN for 

predicting the performance of the scrubber system requires 

setting the appropriate parameters as the accuracy of the 

network is largely dependent on the selection of these 

parameters. This includes setting up the number of hidden 

neuron numbers and fastest back propagation training 

algorithm. The correlation coefficients which include the R-

value and the mean squared error (MSE) are useful 

indicators of the neural network’s performance evaluation.  

 

In the present study, optimization procedure for obtaining 

the best performance of the scrubber system was carried 

out between the mean squared error (MSE) with the hidden 

neuron number and the training algorithms and several 

values were obtained as shown in Table 5. Considering the 

MSE goal of 0 values, the lowest value was obtained to be 

0.00000107 and this corresponds to the optimum hidden 

neural numbers of 6 as indicated in Figure 7. 

 

 

 

 
 

Figure 7: Comparison of Neuron Number and MSE 

This is followed by evaluations of the three layer network 

to obtain the fastest training algorithm to be selected from 

the eight back propagation algorithms. As shown in Table 

5, the Powell-Beale Conjugate Gradient Back propagation 

(CGB) was determined to be the best training algorithm 

with the least MSE (0.00000107). Comparison between these 

algorithms and the MSE is shown in Figure 8.  

 

The neural network output and the corresponding targets 

are in the post processing regression analysis (postreg) 

which returned different values of correlation coefficient 

(R-value).  

 

 

 
 

Figure 8: Comparison of MSE and Back propagation Training  
Algorithms 
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From R-values described in Table 5, the highest value 

having the best fit was evaluated to be 0.99793 and this 

corresponds to the optimum hidden neuron number (6), the 

lowest MSE and the fastest training algorithm CGB.  

Considering Table 5 and plots of the Comparisons in Figure 

7 and 8, it can be seen that the performance fitness of the 

neural network (MSE and R-value) describes the 

effectiveness of the ANN model in predicting the 

performance of the scrubber system and the ANN model 

follows the pattern of the theoretical data describing the 

scrubber performance at a higher efficiency range. It is well 

known that the perfect correlation between the outputs and 

the targets is described by the best fit that is closer to 1. 

 

5. CONCLUSION 
The present study described the use of Artificial Neural 

Network (ANN) modeling approach for predicting the 

performance of wet scrubber system for air pollution 

control. The results obtained are quite encouraging and 

suggests the usefulness of ANN based modeling method in 

accurate prediction of the scrubber system with nonlinear 

operating characteristics as an alternative to the analytical  

approach which appears to be more complex and requires 

numerical solutions. The study concludes that, the ANN 

model output follows the trend of the theoretical output of 

the scrubber performance at a higher level and all the 

prediction proved to be satisfactory with the correlation 

value of about 0.9979 and mean squared error of 

0.00000107. 
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